Studies in Computational Intelligence 150

Roger Lee (Ed.)

Software Engineering
Research, Management

and Applications

@ Springer

Studies in Computational Intelligence, Volume 150

Editor-in-Chief

Prof. Janusz Kacprzyk

Systems Research Institute
Polish Academy of Sciences

ul. Newelska 6

01-447 Warsaw

Poland

E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series can be found on our homepage:
springer.com

Val. 128. Fatos Xhafa and Ajith Abraham (Eds.)

Metaheuristics for Scheduling in Industrial and Manufacturing
Applications, 2008

[SBN 978-3-540-78984-0

Vol. 129. Natalio Krasnogor, Giaseppe Nicosia, Mario Pavone
and David Pelta {Fds.}

Nature Inspired Cooperative Strategies for Optimization
{NICSCQ 2007), 2008

ISBN 978-3-540-78986-4

Vol. 130. Richi Nayak, Nikhil Ichalkaranje

and Lakhmi C. Jain (Eds.)

Evolution of the Web in Artificial Intelligence Environments,
2008

[SBN 973-3-540-79139-2

Vol. 131, Roger Lee and Haeng-Kon Kim {Eds.}
Computer and Information Science, 2008
ISBN 978-3-540-79186-7

¥ol. 152. Danil Prokharov (Ed.)
Computational Intelligence in Autorotive Applications, 2008
15BN 978-3-540-79256-7

Vol. 133, Manuel Grafia and Richkard J. Duro {Eds.)
Computational Intelligence for Remote Sensing, 2008
ISBN %78-3-540-79352-6

Vol. 134. Ngoc Thanh Nguyen and Radoslaw Katarzyniak (Eds.)
New Challenges in Applied Intelligence Technologies, 2008
[SBN 978-3-540-79354-0

Vol. 135. Hsinchun Chen and Christopher C, Yang {Eds.)
Intelligence and Security Informatics, 2008
ISBN 978-3-540-69207-2

Vol. 136. Carlos Cotta, Marc Sevaux

and Kenneth Sorensen (Eds.)

Adaptive and Multilevel Metaheuristics, 2008
15BN 978-3-540-79437-0

Vol. 137. Lakhei C, Jain, Mika Sato-Ilic, Maria Virvau,
George A. Tsihrintzis, Valentina Emilia Balas

and Caniclous Abeynayake (Eds.)

Computational Intelligence Paradigms, 2008

ESBN 978-3-540-79473-8

Val, £38. Bruno Apolloni, Witold Pedrycz, Simone Bassis
and Dario Malchiodi

The Puzzle of Granular Computing, 2008

ISBN 978-3-540-79863-7

Vol. 139. Jan Drugowitsch
Design and Analysis of Learning Classifter Systems, 2008
ISBN 978-3-540-79865-1

Vol. 140. Nadia Magnenat-Thalmann, Lakhmi C. fain
and N. Ichalkaranje (Eds.)

New Advances in Yirtual Humans, 2008

[SBN 978-3-540-79867-5

Vol. 141. Christa Sommerer, Lakhii C. Jain

and Laurent Mignonnean {Eds.)

The Art and Science of Interface and Interaction Design (Vol, 1),
2008

15BN 978-3-540-79869-9

Vol. 142, George A, Tsihrintzis, Maria Virvau, Rabert . Howlett
and Lakhmi C, Jain (Eds.}

New Directions in Intelligent Inferactive Multimedia, 2008
ISEN 978-3-540-68126-7

Vol 143. Uday XK. Chakraborty (Ed.)
Advances in Differential Evolution, 2008
[SBN 978-3-540-68827-3

Vol. 144, Andreas Fink and Franz Rothlauf (Eds,)

Advances in Computational Intelligence in Transpory, Logistics,
and Supply Chain Management, 2008

ISBN 978-3-540-69024-5

Val. 145. Mikhail Ju, Moshkov, Marcin Piliszeauk

and Beata Zielosko

Partial Covers, Reducts and Decision Rules in Rough Sets, 2008
ISEN 978-3-540-69027-6

Yol. 146. Fatps Xhafz and Ajith Abraham (Eds.)
Metaheuristics for Schedulingin Distributed Computing
Environments, 2008

ISBN 978-3-540-69260-7

Vol. 147. Oliver Kramer
Self-Adapiive Heuristics for Evolutionary Computatior, 2008
ISBN 978-3-540-69280-5

Vol. 148. Philipp Limbourg
Dependability Modelling under Uncertaingy, 2008
ISBN 978-3-540-69286-7

Vol 149. Roger Lee (Ed.)

Software Engineering, Artificial Intellizence, Networking and
Parallel/Diztributed Computing, 2008

1SBN 978-3-540-70559-8

Vol. 150. Roger lee (Ed.)

Software Engineering Research, Management and
Applications, 2008

ISBN 978-3-54(-70774-5

- ——

-

Roger Lee
(Ed.)

Software Engineering Research,
Management and Applications

@ Springer

"aqissod Apsnotaard rey suonduosep NG [evidiio
aq Jo 1 3y jo 1red 1og1e; e Suiazesard armas ‘uoneunoysuen aadwos e sapiacid
olym unpUOS[E UONEULIOJSUETD SUnSIXa) JO Juouraoueyue ve osodoid slogine aq,
IMIAYINY PAUALIO-IVIAIRS 0] paiefal se ‘(TAJg) oFenSue] ajqeinooxg ssavorg
ssoursng o1l (N4 9) tonejop Surapojy ssaoold sssuisng Surumojsuen jo spogiou
UOLIWoD 2] giim pajerdosse suajqoid a1 sseippe Te 1@ pacdey eron ¢ Joydeyo up

‘sjuswiAo[dap Mo pUSIIiIOss] 0} SJUSUNIadxs 350Y) JO SUONEAIISQO) WIS

-a1d pue ‘onbruyse) 1oy Jo ANpT[ea 2y AJuI24 0) sjuaHiadys uoprad Aayp wreouos

olares-Jo-Aenb oidwrs & Juore ssueunoprad aacidmy ey SWoISAS pappaquis pur

SIIT)-[B31 PANGLOSIP og Jo siwawio[dop 10 Suiyoress rof ‘Furijord surnaseq uo paseq
‘anbruyoey ordurts e jusserd seqyon eyppnmuy pue [‘H sewrer ‘v sadeyo uf

‘sanbnnyos pue spom

35311 JO MaIATaA0 Terouad e sapiaold uayy oy pue ‘ssaocoxd yuawopdap sy suuieans

0] pasn 2q sanbiuysa) pue s[e0] oneWoINe UrEP3d Jei sesodoxd oy “ssaooad Jeswiord
-9p amemyjos 2} Jo sIFud[[eyd) $21eSNISOAUT UoOUIRpASl Sseqqy ‘¢ Iadeyd up

-sasudIo)ud pazis WP pue

[[eTUS M 980 J0J PUSWLIOIII PUR ‘S[OpOW §sauisng o) poylsuwr sty Ajdde wagy Aoy,
Teseidde paseq-a1reuuonsanb Jo asn oY) 03Ul OO “[B 32 BI0IED) ueAf ‘7 Io)deyd uf

“AIEMIJOS IOND A Iagaune] NI[es UBI[IZelg JO our
1onpoid Funsixs ue uo AS51ENS 1R JO 1531 A5 € WIoHad pue ‘Juswoevuey AJIIqELIRA
10] A331ens e yuaserd sioyine ay], -sour jonposd juswdoreasp ammyjos ur AIiqenrea
SurdeusuI Jo saFuUS[[eYD U SSOOSIP Te 10 [[eIeSfIng nusyy vueion ‘[1aydeyd uy

*MOTAAI SNOJOS LI JO SPUNOT JAYUNT JUSMIIPUN PUR ‘SINTUINI0D Wwiva3oid ayy Jo
SIaquisw AQ PIJIMIQNS SITODS MITAIL UO PISeq UsoyD oTom sioded oy, ‘swnjoa smp
ur wat ysiqnd 01 Jepro Ul 2duLldueD 9yl 18 uoneyuasaxd Joj paydenoe siaded asoy
woxy s1aded ;1 159q o) pe1I9fes SI901]J0 20UAUOD M) “Furapow pue saM)IANDIE
alemyos ‘Aunoss mnduiod ‘[BASLDAN 25EQEER ‘SOINOUI pue 95021 ‘SUNSY) oIem)jos
‘Bunndwos panqgosipseirered ‘Sunndwics sfigott pue syromeu ‘Fuusouduo arem
-jJos ‘vonenfeaa pue Ayenb aremijos ‘syIomiou pue SWHSAS UONROMINUILIOD ‘S[IPOW
$332001d aremyjos “‘Buudourdus syuswaImbar ‘s[00] pue SPOYlAM [ElUI0) JO SEAIR OY)
a1 SUCLINGLIUOD [ed108xd pue [BON2I02Y) JUS|99Xe pamiesy g0, VIS "Z7—07 wnduy
ue o1qnday Yoz o ur °nfeid U pry sem (8007 VHHAS) suoneonddy pue juaur
-afruey “Yo1easay ‘FuLAUIZUT 2TemIJOS TIO 20UAIMUO.) [EUONRIIS] SIIY Y9 24l

eJaIg

worIadunds
YTEYSOL86
Jaded saxy-proe ur pajuiig

"BIPU] ‘TRULSYY “PIT "1ad S231A1a¢ SUIqsqng SYNUSIS :uS1sa(g 43400 3§ 1953dA],

250 (21233 10} 231 510J3191]) pue suoijendal pue sme] 241399101d WRAI[II A}
woly)dwsxa a1e sawreu yons jey) usuIalels SYads B Jo 35UISqe 1 ur uaad 41dur jou saop
uonedqnd sig) Ut 212 SHIBWAPERD ‘saweu pataisidar ‘saureu sanduosap Terauad jo asn ayp

weT Buidon
UBWLILG 3y Iapun uonndasold o1 ayqer a1e suone[oIA Te3unidg woiy paure1qo 3q sdempe ysnw
280 10) uoIssIIad pUR ‘UOISIAA JUILIND $1E UI 5961 ‘6 Joquindag Jo meT ySriddon uewrian ayy
Jo suostaoxd a1 opun A[uo paprattad st joaasy) sired ro uonrestqnd smy Jo uwonestdng syueq
vIep ut ade101s pue ‘Aem 1910 AU UT fo WoIdTW uo uonPmpoidal ‘SuUnSEOPrOI] ‘UONEIDAL
‘SuUOLENSTf Jo asnoax ‘Sununidal ‘wonesuer) Jo siyS11 sy A[[edymads ‘pauiaouod st [RrIALRW
a1 jo 17ed 10 J[oyMm a) INPSYM ‘paalasal axe syBu [y WBrddo> 0y 12fqns ST ydoM STy,

Z1aqpray uted Sepap-1e8utadg gooz &)
99¥0£6800T I2quUmp [oruo)) ssaifuol) jo Arelqry
scuadiayug reuotieInduior) Ut saTpRIg

Xe6F60981 NSSI

T-1950L-0F5-€-8£6/2001°01 10T

1-1950L-0FS-€-8L6 NASI-2 SFLLOL-0VS-£-8L6 NESI

npa'q:ngm:@A.I[aa[rewryy
vin

6588% [“IUEsLald WY
€15 [{eH 92783
Ayrsaaamuny wedTysTy [e13U3D
waunredaq 2ua1as nduon
39T 1980y "Joiq

VI Preface

In chapter 6, Gang Huang et al. investigate the challenges in Software Architecture
(SA) associated with the flattening of hierarchical SA models in order to transform
platform-independent models into platform-specific models. The authors note the
problem of lost comprehensibility, redundancy and consistency in the transformation
process, and recommend a new systematic approach that preserves these qualities.

In chapter 7, Otso Kassinen et al. present a case study that provides practical guide-
lines for Simbian OS software development based on a three-year mobile software
research project on the criterion of networking middleware and collaborative applica-
tions. The authors present observations that advocate the use of platform-independent
solutions, the minimization of project dependencies and the representation of complex
activities in human-readable form.

In chapter 8, Muhammad Bilal Latif and Aamer Nadeem investigate the extraction
of a Finite State Machine (FSM) as associated with the writing of requirements speci-
fications for safety-critical systems. They discuss the challenge of automatic FSM
generation from Z-specifications as caused by difficulties in identifying and extracting
pre- and postconditions. The authors then present an automated approach to the sepa-
ration of this data, as a solution to this problem, and provide tools and experimenta-
tion to support their suggestion.

In chapter 9, Tomis Martinez-Ruiz et al. suggest a SPEM extension that will sup-
port the variability implied in a software process line. They provide for new methods
in their extension, in order to allow for the variability needed in a software process
line.

In chapter 10, Noor Hasnah Moin and Huda Zuhrah Ab. Halim propose a hybrid
Genetic Algorithm to determine the order of requests to be scheduled in the data rout-
ing of a telecommunications network. The authors then discuss the design of three
algorithms based on the Variable Neighbor Search. They conclude by comparing the
performance of these algorithms on a set of data from the OR library.

In chapter 11, Iutian Ober and Younes Lakhrissi propose the use of events as a first
class concept for the compositions of software components. They show how the ap-
proach can be applied to any language based on concurrent opponents and illustrate
their claim with examples.

In chapter 12, Annic Ressouche et al. investigate the challenges of creating auto-
matic specification and verification tools for synchronous languages. They design a
new specification model based on a reactive synchronous approach. In practice they
design and implement a special purpose language that allows for dealing both with
large systems and formal validation.
~ In chapter 13, Haldor Samset and Rolv Brak readdress the notion of active services in
the context of Service-oriented Architecture. In their paper, the authors explain how
active services and their behaviors can be described for publication and discovery.

In chapter 14, Ilie Savga and Michael Rudolf show how the use of a history of
structural component changes enables automatic adaptation of existing adaptation
specifications.

In chapter 15, Dimitrios Settas and Ioannis Stamelos propose the Dependency
Structure Matrix (DSM) as a method that visualizes and analyzes the dependencies
between related attributes of software project management antipatterns in order to
reduce complexity and interdependence. The authors exemplify their solution with a

Preface VII

DSM of 25 attributes and 16 related software project management antipatterns that
appear in the literature on the Web.

In chapter 16, Gang Shen proposes a practical curriculum for an embedded systerns
software engineering undergraduate program. The curriculum advocates a proactive
learning setting in close cooperation with the relevant industry.

In chapter 17, Yoshiyuki Shinkawa proposes a formal model verification process
for UML use case models. The author then describes the results of a test example
performed on a supermarket checkout system.

It is our sincere hope that this volume provides stimulation and inspiration, and that
it be used as a foundation for works yet to come.,

May 2008 Roger Lee

TOT " - e WIPPDN LWy fuoT 1opg PowLDYR A
suoljeagiadg
Z UI0J) suonipuod)seJ pue -1 JO Uoljoel)xy olewoiny

68 DEHUDHA DY DIMLDH Uyag DRYSON] OURT URUSSDI] 053()
Pafo1] aremalppiy
' ul saopoeld Jultuuweslorg §O WelqUIAS o Apnjg asen

[7 W@y Buoyy ‘ung unyouny ‘fung arp ‘buvngy bupn

S[OPOIA] 2INJINIYDIY
aIeMO] [edlHorelaly J10j 3ulme)jel] alemy Ajrend)

69 nquﬁ’gguH J‘lad i@’a}/ﬂ.g ’SPMOLL ‘pa‘oan ’D?;an
Juewdo[asa(] ssv30Ld SSOUISny YOSF Ul SUOuaju] SuiAlosssg

.................................. SIDT{-?OD qupm?uV fyyZH .H S'Qw'l)['
so[yoId aul[aseq 3uls)) swasAS pappequiy pPUe WL -[ea}
PaInqLIIS(J JO 9OURULIONSJ puy-0)-pug Sulacadw] spremof,

woouInpla g sgqy
sanbruyoay,
pue sjooy, :suonyediddy pasegjueunodwmroyy Surfopdag]

OUDUING [onDJ “0I3YIDS DD ‘DI2IDD uDRf
sastdIouy WNIPSA] PUR [[BUIg Ul §S8001J uonIsmboy
aremijog ayy aaorduy o} resreaddy paseg-aireuuor)sand) jo asn

DUALIST A "5) OWMNDY
Loywupapy "§'s PWRS ‘Yasobung 1MUYy DUDIONT

SajolyaA Joyouner] ajl{[eyes Uel[Izeld Jo sour]

1IPNpoLJ sdemyog 10 Adoen)g JuomaSeuwe]y AJ{IQelIep V

SQUaIUO))

X Contents

Towards a SPEM v2.0 Extension to Define Process Lines
Variability Mechanisms
Tomds Martinez-Ruiz, Félix Gareta, Mario Piatting

Genetic Algorithm and Variable Neighborhood Search for
Point to Multipoint Routing Problem
Noor Hasnah Moin, Huda Zuhrah Ab. Halim L

Observation-Based Interaction and Concurrent
Aspect-Oriented Programming
Tulion Ober, Younes Lakhrisst

Modular Compilation of a Synchronous Language
Annie Ressouche, Daniel Gaffé, Valérie Roy.

Describing Active Services for Publication and Discovery
Haldor Samset, Rolv Brek i

Refactoring-Based Adaptation of Adaptation Specifications
Ilie Savgn, Micheel Rudolf

Resolving Complexity and Interdependence in Software
Project Management Antipatterns Using the Dependency
Structure Matrix

Dimitrios Settas, Ioannis Stamelos i

An Embedded System Curriculum for Undergraduate
Software Engineering Program
Gang Shem

Model Checking for UML Use Cases
Yoshiyuki Shinkawa e

Author Index e s

List of Contributors

Rolv Br=k

Norwegian University of Science,
Norway

rolv@item.ntnu.no

Tomas Bures
Charles University, Czech Republic
bures@dsrg.mff.cuni.cz

Luciana Akemi Burgareli
Aercnautics and Space Institute,
Bragzil

luciana@iae.cta.br

Mauricio G.V. Ferreira
Institute for Space Research, Brazil
mauricio@ccs.inpe.br

Daniel Gaffé

University of Nice Sophia Antipolis
CNRS, France
daniel.gaffe@unice.fr

Ivan Garcia

Technological University of the
Mixtec Region, Mexico
ivan@mixteco.utm.mx

Félix Garcia

University of Castilla-La Mancha,
Spain

felix.garcia@uclm.es

Aniruddha Gokhale
Vanderbilt University, USA
a.gokhale@vanderbilt .edu

Huda Zuhrah Ab. Halim
University of Malaya, Malaysia
noor hasnah@um.edu.my

Erkki Harjula
University of Qulu, Finland
erkki.harjula@ee.oculu.fi

Abbas Heydarnoori
University of Waterloo, Canada
aheydarnocri@uwaterloo.ca

James H. Hill
Vanderbilt University, USA
j.hill@vanderbilt.edu

Petr Hnétynka
Charles University, Czech Republic
hnetynkaQdsrg.nff.cuni.cz

Gang Huang
Peking University, China
huanggang®sei.pku.edu.cn

Lucia Kapova
Charles University, Czech Republic
kapova@dsrg.mff.cuni.cz

T UINC 29peI3IURTTA eXTm
puR[ui] ‘MM Jo L1SI19ATU[)
e[uel X eIN

uo-npe nyd’ 1esp[Buel
RUIY) ‘AYSISATH[) FUTa
Buey o1r

uo 'npe-nyd: regpriuns
'UIY) ‘AYSIsATuy) Sumyad
ung unyowex

SI0YNQLIUOD) JO IST]

XU @man - T TEpdooweuns
OIS 'HOLEIY 2a9XTN

ayY Jo A)1sIsatuy) [eordojoupa],
OURUWING [2AR]

13 yane-psopsellesp

50391)

‘T{ITO[ESSAYT, JO AIISISATIY) B[30)STTY
so[euIe}§ STUeO]

d{-oe nyoynii- suripeseyurys
uede ‘ANSIsATU[) nyoqndy
BMRUIYS DINATYSOX

woo ' coyeigusys-Jued

ruIy) ‘ASo0uyos],

pue ooustag jo Aysivani() Suogzenyy
uayg Suer)

18- yine psopsejjesp

902915)

‘IIuoressay T, JO AJISIBATI]) 9[j0SLIY
se11ag SoLnIIi(]

Sp USPSsIpP-NY - JUTPETST
AUBULISN)

‘URpPSaI(] YBUSIDAIU[) SUISTUTDIT,
e3ae§ a1

OU " NUIT " WoJTPSIOPTEY

AemIoN

‘IOUBTIG JO AJISISATH[] URTIOMION
jasmeg I0peH

op’ UBPSLIP-N1 * FUTPZOTO0I0S
AueuLnry

‘UpSAI(] YESIPATU[) AYISIULIA],
JIopny [eeySIN

11 dusue ewspia

AURI]

‘sijodryuy

viydog sewljy sop s[00T YD
Aoy suI9eA

Iy-eriut-ertydosgeyonossey o TUOy
avuelg

‘pUeLIBYIPATY

- sfodnuy ewdog YIUNI
3YINOSSIY oIuUUY

ss uronyprTulzerd oTtIem

uredg

‘epURY eI-RB[[135R)) Jo AYISIBATU])
unyjerd oLrefy

X0 WA 028X THHROUTUS T
0DTXA[‘UOL8aY 39IXTI

oY} JO A)ISISATI[} TEIIO[OUYDIA],
03YDeJ BlIE))

II°3TITPISQO TRTTNT

aouel]

CLIMI - 9SN0[NOT, 9P PHSISAIU[
12q0 uelnny

8a0 woepuismer

LA & |

‘AJISIOATU() YRUUIL 1Y PRWUIRTOJ]
waspe N Iawuey

£m- nps ' WngeUsRY T00U
eIsAB[R]y “BAR[RIA Jo A)SIDATUN)
O] YRUSEL] IOON]

1q-den1TodpIIoNTUToW RETES
[lZelq ‘o[nrvg oeg

Jo AJISIaATU)) JO [00T2G DTNPAIAI0]
HONUPN "S° S BUIfag

uo - nps -nyd - TespyIem
eIy ‘AYEIBATI) Suryo
13y Suoy

S8 WIONHZOUT]ICH SRuo]
TeOg

“BUDURIN W-R([)SE)) JO AYSIOAlu])
ZIN-ZSUTLIR]A] SBEWIO],

weo yrendpFTie [RTTq U
uR)SIHe

‘AJSIDATU() YRUUI[[y Peueyojy]
JIIeT relld peuwrieyny

IFT3TITHIeqo weTInt

B0URL]

‘LTYI - 9SNO[NOT, 2P PYISIOATU])
ISSLIYYer] S3unog

TI 1IN0 99HRTASOY " OUWT]
pureuL] ‘nn) jo AUSIDATU
B[SyS0Y OUIL],

TF OI0Q " 2PUIUTSERY " 0830
pueUlg NOQ Jo AHIsIaATUfy
UDUISSRY 0510

SI0INGLIO) JO 81T 11X

114 M.13. Latif and A. Nadeem

13. Dick, J., Faivre, A.: Automating the generalion and sequencing of test cases from
model-based specifications. In: Larsen, P.G., Woodcock, J.C.P. (eds.} FME 1993.
LNGS, vol. 670, pp. 268-284. Springer, Berlin (1993}

14. Sun, J., Dong, I.5.: Extracting FSMs from Object-Z specifications with history in-
variants. In: Proceedings of the 10th IEEE International Conference an Engineer-

ing of Complex Computer Systems TCECCS 2005, pp. 96-105. IEEE Computer

Society, Washington {2005)

15. Murray, L., Cartington, D., MacColl, I., McDonald, J., Strooper, P.: Formal deriva-
tion of finite state machines for class testing. In: P. Bowen, J., Fett, A., Hinchey,
M.G. {eds.} ZUM 1998. LNCS, vol. 1493, pp. 42-59, Springer, Berlin (1998}

16. Btocks, P., Carrington, D.: A framework for specification-based testing. IEEE
Transactions on Software Engineering 22(11), 777-793 (1996)

17. Hierons, R.M.: Testing from a Z specification. Software Testing, Verification and
Reliability 7(1), 19-33 (1897)

18. Aslraf, A., Nadeem, A, Automating the generation of test cases from Cbject-Z
specifications. In; Proceedings of the 30th Annual International Computer Software
and Applications Software COMPSAC 2006, pp. 101-104. IEEE Computer Society,
Washington {2006}

18. Murray, L., Carrington, D., MacColl, 1., Strooper, F.: TinMan - A Tesi, Derivation
and Management Tool for Specification-Based Class Testing, In: Proceedings of
the 32nd International Conference on Technology of Object-Oriented Languages,
pp. 222-233. IEEE Computer Society, Washington (1999)

20. Huaikou, M., Ling, L.: A test class framewnrk for generating test cases from Z spec-
ifications. In: Proceedings of the 6th IEEE Internsational Conference on Complex
Computer Systems IGECCS 2000, pp. 164~171. [EEE Computer Saciety, Wash-
ington (2000}

21. Ling, L., Huaikon, M., Xnede, Z.: A frarnework for specification-based class testing.
In: Proceedings of the &th IEEE International Clonference on Complex Computer
Systems, JOECCS 2002, pp. 153-162. IEEE Computer Society, Washington (2002)

22. Bun, J., Dong, 1.5.: Design synthesis from interaction and state-based specifica-
tions, IEEE Transactions on Software Engineering 32(2), 349-364 (2006)

23. Jacky, J.: The way of Z: Practical Programming with Formal Methods. Cambridge
University Press, New York (1996)

-

Towards a SPEM v2.0 Extension to Define
Process Lines Variability Mechanisms

Tomds Martinez-Ruiz’, Félix Garcia!, and Mario Piattini'

Alarcos Research Group, Information and Technology Systems Department
Escuela Superior de Informatica, University of Castilla-La Mancha

Paseo de la Universidad, 4, 13071 Ciudad Real, Spain
{tomas.martinez,felix.garcia,mario.piattinilucln. es

Summary. Software organizations need to adapt their processes to each new project.
Although Software Process Lines are the most suitable approach for the design of pro-
cesses which are adapted to different contexts, SPEM does not include the appropriate
mechenisms for modelling them. The ohjective of this paper is to suggest a SPEM
extension which will support the variability tmplied in a Software Process Line. New
variability mechanisms based on the use of Variation Points and Variants, by means
of which the variability necessary in a Process Line is represented, have been pro-
posed. The new mechanisms that we shall introduce into SPEM, will allow it to model
Software Process Lines. From these lines, the generation of processes adapted to each
context will simplify the selection of the appropriate variants for each variation point.

Keywords: Software Process Lines, SPEM, Variability.

1 Introduction

Software development organizations are currently interested in increasing their
competitiveness and quality levels. In order to achieve this target, they need
to have well-defined processes. For this reason, various process evaluation and
improvement models have been proposed, such as CMMI, ISG/IEC 15504,
SCAMPI, MoProSoft, BvalProSoft or the COMPETISOFT Methodological
Framework processes.

However, the diversity of enterprises, projects and contexts in which processes
take place is too diverse. For example, in Spain, the Civil Service Ministry re-
quires the that totality of the software that it uses be developed using Métrica
v3 [7], which is not used in the projects of other official bodies. This makes the
statement Just as there are no two identical software projects, there are no two
tdentical software processes in the world (5] elear. In this respect, it is difficult to
apply defined generic process models in organizations without having previously
adapted them to the specific situations in which they are going to be developed
[18].

In the adaptation process of a software process, a set which is very similar to
the original processes is developed, although these processes are not very different
from each other. All these processes, which are virtually identical, make up a

R. Lee (Ed.): Soft. Eng. Research, Management & Applications, SCI 150, PP. 115-130, 2008.
© Springer-Verlag Berlin Heidelberg 2008

springerlink.com

116 T. Martinez-Ruiz, F. Garcia, and M. Piatfini

Software Process Family. In a process family, processes can make good nse of
their similarities and exploit their differences, in a manner similar to that o
Software Product Lines [13].

In order to generate the differences that distinguish each process of a softwar
process line, it is necessary to facilitate mechanisms through which this variation
in the processes can be defined. However, SPEM (Software process Engineering 5
Metamodel) [12], which has been confirmed as.being the appropriate Metamodel’
with which to represent software processes does not, al present have the appro-
priate variability mechanisms to allow the generation of processes following thy
Software Process Line approach to take place. .

In this paper, new variability mechanisms in SPEM are proposed, which con.
tribute with the functionality necessary to model Software Process Lines. Besides
this introduction, in Sect. 2 a state of the art in software product lines variabil
ity mechanisms is presented. Section 3 contains & summary of SPEM and an
analysis of its current variability mechanisms, so that we can go on to show our
proposal for variability mechanisms in Sect. 4. Finally, inr Sect. 5 our conclusions
and future work are presented.

2 State of the Art: Variability in Product Lines

To the best of our knowledge no other works exist in which the product lin
approach has been applied to form modelling variability in softwarc processes
which constitutes the topic of this work.

However, some approaches dealing with variability in software product lin
exist, which it is useful to analyze within the context of the work presented here

Within the relevant literature, the majority of the variability mechanisms
proposed for Software Product Lines are based on variation poiats and variants

A variation point is the place in which variability occurs 2], whereas variant
are the concrete slements that are placed at the variation points, each of whic
jmplements this variability in a different way.

In [17], after an analysis of the various approaches through which the variabik
ity in Software Product lines can be modelled, it wus determined that the use of
variants and variation points peesents, amongst other advantages, the possibility:
of adding new variability implementations, by adding new variants, Furthermore
according to [1], it is possible to specify dependences and conatraints betwee
these elements.)

In {15] & solution which is also based on variations, variation points and the
relationships is proposed. This sclution furthermore defines dependences bey;
tween variation points and includes three abstraction levels in which to mo
variability. These components are included in the COVAMOF framework, which
is validated by means of an experiment.

The PULSE methodology defines the five basic elements of a software produg
lirie: variation points, variants, their relations, constraints and a mechanism wit]
which to generate products. It also inclucdes a Decision Model in & high level 0
ahstraction to define system variants [14].

A SPEM v2.0 Extension to Define Process Lines Variability Mechanisins I8

Van der Hoeck proposes an approach based on XML schemas which model th
system: structural breakdown in a incremental way. One notable characteristic ¢
this mechanism is that it allows us to manage variability owing to the evolutioi
of versions of the product itself [4].

In [3], an idea based on a set of patterns with which to build, manage am
manipulate variation points is presented,

XVLC [19] is a methodology that adds extensions to UML in order to mode
variation points and variants, and it furthermore specifies that the choice of .
variant atfects software architecture and distinguishes those variants that affec
the whole system in a crosscutting manner.

Software Process Lines variability mechanisms can be designed by using th
ideas from these proposals as a starting point. These mechanisms can be adde
Lo the process definition of SPEM to permit the Process Lines specification.

3 Software Process Engineering MetaModel

SPEM (Software Process Engineering Metamodel) [12] is the Object Manage
ment Group (OMG) proposal throngh which to represent software processe
and metheds. It is based on other OMG models, such as, MOF (Meta Objec
Facility} [10] and UML {Unified Modelling Language).

Recently the new 2.0 version of this Standard has been developed, whic
contributes significant new capabilities to the latest version. The Metamodel i
divided into seven packages, with a hierarchical structure Fig. 1.

The following is a summary of the contents of each package illustrated in Fig. 1

+ Core: this contains all those classes and abstractions which are part of th
metamode] base.

* Process Structure: this sub-paclage contains the elements which are nec
essary to define process models.

* Process Behaviour: this models process behaviour.

* Managed Content: this contains the elements which are needed to manag

textual method descriptions.

Method Content: this sub-package includes the concepts with which t

define methods.

Process with Methods: this sub-package permits method and process in

tegration,.

Method Plugin: this sub-package contains the metamodel concepts wit]

whicl to design and manage reusable and configurable methods and proces

libvaries and repositories. It also includes certain variability elements an

allows us to define the granularly extended process.

SPEM includes graphic notation, but uses UML associstion relationship

[> ¥ -
SPEM's notation ailows us to represent and visualize diagrams with processe
and methods.

118 T. Martinez-Ruiz, F. Garcia, and M. Piailin

—
MethedPiugin

- CNBITES
"*xmenger -.""-n..__
; . .
ProcasgWithMethods.
mesge L
“_"’9' M
> MethodComent
‘H;lmargh
s 1 i
PracessBehiamior | amerges { amergen
) H —
X H ManzgadCantant
smietges e 5, -
ProcaawSiniclug
. _»"ummp
wirterger v /
Core

Fig. 1. Structure of the SPEM 2.0 Metamodel [12]

3.1 Variability in SPEM

SPEM v2.0 defines variability within its MethodPlugin package. It includes the
classes which are necessary to allow variability in methods and processes, by
means of defining the abstract VariabilityElement class and the Variability Type
enumeration.

The abstract VariabilityBlement class (Fig. 2) allows us to add the variability
concept to the process and the method definition of both the ProcessStructure
and MethodContend packages. Given that the Activity (Process Structure pack-
age), MethodContentElement (MethodContent package) and Section (Menaged-
Content package) ciasses inherit from the VariabilityElement class, then these
and their descendants acquire the “vary” capability.

By meuns of variation, the structure of the method can be customized without
having to modify it directly.

The VarinilityType enumeration defines the type of variability between both
instances of the VariabilityElement class. It includes the contributes, replaces,
extends, emtends-replaces and na vaiues (by default), The first four are now
deseribed:

Contributes is a variability relationship that allows the addition of a Vari-
abilityBlement to another base, without altering its original contents. This

A SPEM v2.0 Exteusion to Define Process Lines Variability Mechanisms 119

“ infrastructursLibeay. .Co
Constructs. .Clasertior

wpnumaraions
VarisbifilyElement + varighilityBagedOnElomenmt | VariabiltyType
variability Type ; Venabildy Type 1 s
contributes
exienda
I N replaces
+ vanabiktySpecialElemant extanda op'aces
— {varabdtySpociaElement lyps(} ==
@E varabityS st ORElmenLtype(}) : {vacabilty can only
Ba cefined belvwoon Contenttiements. of e #ame sub.._

MaltodConlantEpment

+ suppressedMethodCont

Section EQ predecessor
B 0.1

Fig. 2. VariahilityBlernent class and its relationships [12]

relationship has transitive properties. A base element must have more than one
contributor.

Replaces is a variability inechanism which permits the VariabilityElement to
be replaced by another one, without modifying its properties. A base element can
anly define a replaces relationship. Like contribution, the replaces relationship
is transitive.

The extends relationship is an inheritance mechanism between the Varigbil-
ityElement. This relationship is similar to the UML extends relationship. This
relationship is also transitive and both the contributes and replaces relationships
take priority over extends.

The extends-replaces refationship combines the effects of both previous
relationships. So while the replace relationship replaces all the properties of the

base element, this one only replaces those values which have been redefined in

the substitute element.

3.2 Limitations of the SPEM v2.0’s Process Lines Variability

As a result of the analysis carried out in SPEM, certain limitations have been
detected when it is used to model Software Process Lines.

1. The proposed variability in SPEM is orientated more towards changing
methods than processes. In fact, the diagram in Fig. 2 shows that the
methodContent class inherits from the VariahilityElement class. The
methodContent class is a super-class of all the classes which permit the
design of methods, and only the Activity class is used to model processes,
Due to the fact that the processes are the entities that are executed, it will
be desirable to carry out the necessary modifications/adaptations in order
to execute it in the context of a project within the process, and not in the

120 T. Martinez-Ruiz, F. Garcia, and M. Piattini

method upon which it is based. Furthermore, we must take account that
when the method content is used, the user can define the correspondence
between the process and method elements, and may ignore the variability
introduced into the method, so that it cannot be used.

2. This variability mechanisms do not permit the delimitation of the core part
of the Software Process Line. As we have discussed previously, a Software
Process Line is composed of a set of processes which have certain common
characteristics, and which differ in other characteristics, and this makes them
suitable for one context or another. However, the variability mechanisms of
SPEM do not allow us to establish that a part of the process line will be
common to all processes, ot to limit these variations.

- The variability mechanisms of SPEM do not guarantee that the variations
introduced to generate a new process will not alter its objectives. The goals
must be common to all the adjustments that are made in the process us-
ing variability mechanisms. However, because the variability mechanisms of
SPEM do nat allow us to define the core of a Software Process Line, it is not
possible to include the objectives of the process in it and ensure that they
are not modified. To aveid this, the actions of the variability mechanismns
should be mcre limited. That is, in a process line it should be possible to
specify which parts may vary and in which range of values.

4. It may be difficult to reuse SPEM v2.0 plugins with the variability mech-

anisms defined. In the SPEM MethodPlugin the MethodPlugin elements
are defined as follows: these are extensible packages that represent a physi-
cal container for process and method packages (12]. Likewise, the replaces
operation is used in MethodPlugins to replace ContentElements such as
RolcUse, TaskUse, or Activity with a new variant or to change the relation-
ships between them [12].
This adaptation approach using plugins has the disadvantage that it is nec-
essary to define a new plugin in order to extend that of the hase which
contains the process specification and adapt it to the context in which it will
he enacted.

5. SPEM v2.0 does not include a specific notation with which to represent the
process variability. Variability is shown by using the UML association and
inheritance relationships, characterized by means of stereotypes. However, it
is difficult to read some of these relations.

o

To sum up, due to the limitations previously listed, we believe that SPEM
v2.0 variability mechanistns can be enhanced for modelling variability in Software
Process Lines.

4 Specific Process Lines Variability Mechanisms

We introduce an outline of our variability mechanisms proposal with the aim
of allowing SPEM v2.0 to support Software Process Lines. Likewise, we analyze
their integration into the SPEM metamodel currently defined, and present an
example of their use.

A SPEM v2.0 Extensiun to Define Process Lines Variability Mechanisms 121

4.1 General Description

Gur proposal is based on the mechanisms with which to manage the variability
defined in Software Product Lines. Qur aim is to use said mechanisms to devclop
others which will allow us to model variability in Software Process Lines. We list
the elements that we believe to be necessary below.

L. Variation points and variants: in the same way as was identified in
the Software Product Lines, the Variation points are the point in the pro-
cess madel in which the variation occurs (adapted from [14]). They will be
“empty” model elements that will be “flied” with variants to allow the gen-
eration of a new process from the process line which witl be adapted to the
context in which they are to be developed. There will be variants of each
element of the model (VActivity, VWorkProductDefinition, ete.), which con
be inserted at certain variation points, and which will be dependent on the
context in which the process is going to be implanted. Each variation point
will have a set of associated variants and will be occupied by one or more of
them.

Due to the fact that several element types take part in a process (Rolelise,
WorkProductUse, Activity, TuskUse), this distinction must also be made
between the different types of variant and variation point elements.

2. Relationships and dependencies: Both, variation points and variants
define the relationships between them. Variability is an entity which is as
complex as a process and cannot be seen as a precise occurrence, but as
one which will affect several part of the process structure. Dependencies will
therefore allow the variations introduced into a process to be consistent.
That is to say, they will ensure that if a task is carried out by a role, then
hoth are connected.

3. Constraints: Tn addition to the relationships between the elements, we also
need to take into account that constraints may appear between elements.
For example, a constraint might be that a mandatory variation point must
be always occupied by a variant.

4.2 New Variahility Mechanisms Added to SPEM v2.0

In a way similar to that in which UML profiles extend their metamodel [6], the
SPEM Metamodel can be extended to support the variahility mechanism defined
in the previous section. Different extensions can thus be added to the Method
Plugin standard’s package. To ensure the consistence and correct use of the now
elements, OCL constraints are used [11).

First, a LProcElement should be designed. This is an abstraction of all the
elements related to the Saftware Process Lines variability (Fig. 3). LProcElement
is an abstract specification of Classifier, from UML packages.

The two specifications of LProcElement shown in Fig, 2, VarPoint and Vari-
ant, are the variation point and variant representation, respectively. Variants
know the variation point for which they have been designed and which they will
be able to oceupy.

122 T. MartinezRais, F'. Garcia, and M. Piattini A BPEM v2.0 Exiension to [Define Process Lines Variability Mechunisms 123
Infrastructrel ibrany:Core: : Canstructs: Clossifier ' Table 1. Constraint of Occupation relationship between Varigtion and Variation Point
? . ’ constraint Occupation inv:
Fm self.general. QcllsKindOf (VarPoint) and
| &Proclhment | self.specific. OcllsKindOf {Varians)
! L _ *~— —>
VarPoumt ., [Varkee
[A i . i tanshi
YL c RE Fig. 6. Occupation relationship arrow
Fig. 3. Variability by means of LProcElement : Process models will contain different specifications of VarPoint, which will .
be “occupied” by the appropriate specifications of Varigni. The relationship
_ that binds a variation point to its variant, Qecupation, is a UML Generalization
VarPoint Activiy Varkawt specification {Fig. 5).
The Qecupation relationship may in turn be of several types, which are spec-
) ified by the QccupationType. These may be Optional, Mandatory or Alternative
type. Given that this refationship is also a generalization, we need to define the 3
W Achvily VActivity

OCL constraint to foree it to be used exclusively between variants and variation

points {Tahle 1). -
Constraint of Table 2 specifies that the nature of the elements between which

Fig. 4. VPActivity's and VActivity’s concrete types the Occupution relationship is established must be compatible and the variant

is designed to occupy this variation point.

The Occupation relationship is drawn by using an arrow similar to that of the I
[intracatrcyurt ibrery:: Core:: Cona ucteG crsfization | . - UML generalization, but with a circle on the back tip and a filled triangle on 4

lll ToprOcasisd the front tip (Fig. 6), to differentiate it from the other SPEM relationships. il
Finally, dependences can be established between elements, called Variability- i
Octupstion 1 [OteupstionType ' Deperdences (Fig. 7). ;
© type : These are a UML dependencies specification, but can only exist between ele-
A ‘ ments belonging ¢o the Process Lines (Table 3).]
[I 1 ! Several types of variability dependencies may exist, such as VariantTo Vari- .‘
Opcional Menduory W‘ ant, VarPoini To VarPoint or VariantTe VarPoint, depending upon the element be-]
i : :
Hneec: int . B
. Table 2. Occupation relationship between compatibility types constraint i
Fig. 5. Occupation relationship between Variants and VarPoints constraint Occupation inv: s

{self.general. OcllsTypeOf (VPRaleDefinition) implies i
self.specific. OcllsTypeOf (VRoleDefinition)

or self.general. OcllsTypeQf (VPActivity) implies .
self.specific.OcllsTypeQf VActivity) i
or self.general.Oclls Ty peQf (VPTaskDefinition) implies H
self. specific. OcllsTypeQOf(V TaskDefinition)

or self general. OcllsTypeOf (VPWorkProduet) implies
self.specific. OcllsTypeOf{ VWorkProdut))

and self.specific.canOccupe-jincludes(self. general)

The two aforementioned classes are also abatract, due to the fact that var- ‘
lous variants and variation peints of a variety of natures may exist (Activity,
RoleUse). Fig, 4 shows how the variation peints and variants of a concrete el
ement were mocdelled. In this case, the figure shows the activity variant and
variation point. As we can see, both VPActivity and VActivify are also a speci-
fication of the Activity class.

i
'
i
1
i
I
|

124 T. Maztinez-Ruiz, F. Garcia, and M. Piattini

[Infrsoatructiret iiwagy::Core: C onsinuctss b opandency |

type of dependency ‘?
| Mardabity Depeadency Type | 0. [VaredidyGependecy |

NarlendToverf olntepancency

VerPointToVarP dntDependancy |

Fig. 7. Variebility Dependency and its relationships

Table 3. VariabilityDependency is only available for LProcElements

constraint VariabilityDependency inv:
self.supplier. OclleKind Of (L.PracElement) and
self.client.OcllsKindOf (LProcElement)

Table 4. New VarPoint and Varignd graphic icons

Activity ~ WorkProductUse RoleUse TaskUse

T = £ :
o o~ R
Base Element F ,ﬂ%‘ H é‘ﬁb ﬂf&

Activity WorkProductUse RoleUse TaskUse
‘l

VarPoint — % % =

VPActivity VPWorkProductUse VPRoleUse VP TaskUse

B B

VAct.mty VWorkProductUse - VHoleUse VTaskilse

ik

Be

r

l_%

1

Variant

tween which they are defined. Each dependency is associated with its Variability-
DependencyType, which identifies whether it is inclusive or exclusive. For the use
of the model, we also propose new icons by means of which the new variability
functionzlity can be graphically defined. These icons are based on those used to
represent those elements to which a variation capacity is given. (Tabie 4).

4.3 Application Example

To illustrate our proposal, in this section we show a case study carried out on
the COMPETISOFT [8, 9] process model. COMPETISOFT is an iberoamer-
ican project in which a Software Process Improvement Framework has been

B -

A SPEM v2.0 Extension to Define Process Lines Variability Mechanisms 125

Top Management 5oy
(DIR) 7 Business Management B
Manugement
(GER) Process Manzgement
Project Menagament

Raspurce Menagemant
Human Reagures Menagement
Goocs, Barvices and Infrastruciure Mansgement
Krowl adge Menegament

Operations f:_""’ jj
{OPE) Administration of a 8pecific Project
Eoftware Development

Software Maintenance

Fig. 8. Processes and categories in the COMPETISOFT process madel

defined for and adapted to very small enterprises. This framework includes sev-
eral process improvement proposals and is intended to be nsed, with the appro-
priate adaptations, in various ibercamerican countries, The COMPETISQOFT
process medel is made up of ten processes which are grouped into three categories
(Fig. 8). The first is Top Management and this provides the aligninents which
allow the organization to work: The second category, Management, includes the
process, project and resource management. The Operations category deals with
the practices of development projects and software maintenance.

The process model pattern includes a section called “adjustment guide” which
determines possible modifications toa the process which should not affect its ob-
jectives. This guide includes an introductory rough draft to the variability in the
process. We shall now show how the variations in the software development pro-
cess of COMPETISOFT allow said process to be modelled by using the SPEM
extension described in this paper. A Process Line is thus generaled, whose pro-
cesses are adapted o the situations described in the adjustment guide. Without
these variability mechanisins, & specific process model for each situation would
be necessary.

1. Although the activities in COMPETISORT corresponding with dnanlysis
and Design have been considered seperately, in certain organisations it may
be seen us expedient o fuse them, and to call the resulting activity Anagsis
and Design. The process will thus have an activity type variation peint,
and a variant will take place which will contain (Fig. §), An example which
is similar to the aforementioned case occurs with the activitics related o
Integreiion and Testing.

126

T. Martinez-Ruiz, F. Garcia, and M. Piaitini

T
Lgl
Seftware Development

Recuirements \‘arPuiut 1 Constuction VuPoiut 2 Ending

J\ I

Aarysia Design Lute ration and Testing

Ril 3

Apalisys and Design

Tutegration

Fig. 9. Variability in the development process

—>P—Ey

VarPoint L Cotleage Review

o=

Construction

Fig. 10. Variability in optional Colleague Review

. The Colleague Review (sub)activity can be added to the Construction ac-

tivity in order to verify the code of the components. This activity will be
contained within a variant, which could occupy the VarPoint found in Con-
struction (Fig. 10},

. The Regquirements Specification work product contains various products. It

may, moreover, include a User Inferface Prototype with more or less func-
tionality, depending upon how complicated and how important the interface
is. The interface should have a variable functionality which can be mod-
elled as & variation point and can be occupied by various WorkProduct type
variants (Fig. 11).

. The System Testing Plan can be validated with the Client and with the

Securily System. Such (sub)activity will thus have a role type of variation
point which can be occupied by the variants which correspond with the two
roles previously commented upon (Fig. 12).-

. An IREE Standard can be taken into account in the Unil Testing Deﬁmtwn

activity. This document will be an entry variant to the task commented upon

(Fig. 13).

. A (sub)activity of the Modification of User Interface Prototype can be added

to the Consiruction activity, in which the User, an Expert or individuals
must participate. The Construction activity will thus have a variation point
into which the variant corresponding with the aforementioned (sub)activity

i e 4

A SPEM v2.0 Extension io Deline Process Lines Variability Mechanisms 127

Requiretnents Specitication

Umrl:&wiﬂmm

prototype

@;,J

Furrticnal Non.-Fluumml U»ellmcl face

Userlnterface with low
functicnality prototype

il V\.

UserInterfrestith Ligh
Amctionality prototype

Fig. 11. Variability in the Requeriments Specification

5] N b\!%'

Validate Testing Plan VarPotnt | Client

!f“ 7
Securily Team

Fig. 12. Variability in the Testing Plan validation

>R

Unit Testing Definition Standards? 1008 1987

=

Other Stavndards

Fig. 13. Variability in the use of Standards

can be inserted. This variant will also have a variation point which can he
occupied by any of the previously described roles (Fig. 14).

As this example shows, the use of the newly defined variability mechanism will
allow the COMPETISOFT software development process to be adapted to vari-
ous contexts. Several aimost identical processes which form a part of the Software
Process Lines have been generated through this adaptation.

128 T, Martinez-Ruiz, F. Garcia, and M. Piattini

- _, i (=1

py——>8g— ¥y

Counstruction VarPoind 1 Modification User
Interface Prototype

/

F’? ‘R O"r P
G by fgy T
Other person Expert Eterface Tester Uter

Fig. 14. Double variability with the Modification of User fnterface Prototype

5 Conclusions and Future Work

As this work has shown, Software Process Lines approach is a powerful tool which
permits the adaptation of processes to the specific conditions of an organisation
and to each of the projects thai it is carrying out at any given time. SPEM
furthermore supposes a powerful initiative through which to model the processes
which an organisation is carrying out, with the end of knowing them better,
purifying them and improving them. The inclusion in SPEM of mechanisms
which are appropriate to the generation of process families facilitates the creation
of process models which are adapted to the particular needs of whatever is being
cartied out. These models are instantiated by means of the proposed mechanisms.

The approach presented in this paper allows us to manage variability from
the perspective of Software Process Lines. The advantages that it offers are
summarized as follows:

s This proposal is intended to measure the introduction of variability in SPEM
processes, thus allowing it to define Software Process Lines.

o As with the Software Product Lines upon which they are based, thesc
new variation mechanisms permit specification within the SPEM metamodel
whose concrete parts may vary.

» By limiting the variability of the variation points, we assure that the rest of
the process cannot be altered.

s Because the variants are extremely small elements, they can easily be reused
at other variation points.

e This approximation includes a graphic notation with which variability can
be more easily modelled in SPEM 2.0 diagrams.

e The proposed extension provides COMPETISOFT process model with a suit-
able notation in which the variants defined in accordance with the adjustment
gnide can be represented in an explicit manner.

As future work, we shall first define variability mechanisms for other construc-
tors of the SPEM metamodel as, owing to the scope of the present work, only
the core elements were considered {activities, work products, roles and tasks).
Furthermore, additiona) empirical validasion will be carried out by applying the

A SPEM v2.0 Extension to Define Process Lines Variability Mechanisms 12

approach to new case studies. Other future work is to automate these variabi
ity mechanisms in the EPF Composer, which supports the definition of SPER
models.

Finally, we shall also consider the aspect orientation approach to model var
ability. Processes are made up of determined ’aspects’, such as security, usabilit;
etc., which have a transversal effect upon all their tasks. Bearing in mind th
similarity between this idea and that of the ‘crosscutting concerns’, defined in t
Aspect Orlented programme [16], and the manner of interrelation which give
place to the final code, the definition of the variability mechanisms in the Sof
ware Process Lines can also be carried out by using the features of the Aspe
Oriented programme.

Acknowledgement. This work is partially supported by the investigation abo
Software Process Lines sponsored by Sistemas Técnicos de Loterfas del Estac
§.A. in the framework of the aggreement about the Innovacién del Entorr
Metodolégico de Desarrollo y Mantenimiento de Software, and by the projec
ESFINGE TIN2006-15175-C05-05 financed by spanish Science and Technolog
Ministry and INGENIO financed by the Junta de Cormunidades de Castilla-1
Mancha, Consejeria de Educacidén y Ciencie, PAC08-0154-9262.

References

. Agikainen, T., Ménnisté, T., Soimimen, T.: Kumbang: A domain ontology £
modeling variability in software product families. Advanced Engineering Informa
ics 21(1), 23-40 (2007)

2, CiauB, M.: Generic modeling using uml extensions {or variability. In: Werkshop ¢
Domain Specific Visual Languages, Tampa Bay, Florida (2001)

3. Goedicke, M., Koellmann, C., Zdun, U.: Designing runtime varialion peints
product line architectures: three cases. Science of Computer Programming 53(F
353-380 (2004)

4, van der Hoeck, A.: Design-time product line architecturcs for any-time variabilit
Science of Computer Programming 53(1), 285-304 (2004)

5. Humphrey, W.3.: Managing the Software Process, Addisen-Wesley, Reading (198
6. Korherr, B., List, B.: A UML 2 profile for variability models and their dependen
to business processes. In: DEXA, Regensburg, Germany, pp. 829-834 (2007)

7. MAP, Métrica. version 3. metodologia de planificacién, desarrollo y mantenimien
de sistemas de informacién. Ministerio de Administracicnes Publicas (2005)

8. Oktaba, H., Garcia, F., Piattini, M., Pino, F., Alquicira, C., Ruiz, F.: Softwa
process improvement in small latin-american organizations: Competisoft projec
IEEE Computer 40(10), 21-28 (2007)

9, Oktaba, H., Piattini, M., Pino, F., Garcia, F., Alquicira, C., Ruig, F., Martines, |
Clompetisoft: A improvement strategy for small latin-american software organiz
tions. Tn: Oktaba, H., Piattini, M. (eds.) Software Process Improvement for Sm,
and Medium Enterprises: Technigues and Case Studies. Tdea Group Inc. {2008)

10. OMG. Meta object facility (mof) specification version 2.0. Technical report, Objc
Management Group (2004)

11. OMG. The object constraint language specification- version 2.0. Technical repo
Object Management Group (April 2004)

130

12

13.

14.
15.

16.

17,
18.

19.

T. Martines-Ruiz, F. Garcia, and M. Piattini

OMGQ. Software process engineering metamodel specification. Technical Report
pte/07-03-03, Object Management Group {October 2007)

Rombach, D.: Integrated software process and product lines. In; Li, M., Bochm, B.,
Osterweil, L.J. (eds.) SPW 2005. LNCS, vol. 3840, pp. 83-90. Springer, Heidelberg
{2006)

Schmid, K., Jobn, 1.: A customizable approach to full lifecycle variability manage-
ment. Science of Computer Programming 53(3), 259-284 (2004)

Sinnema, M., Deelstra, S.: Industrial validation of covamof. Journal of Systems
and Software 49(1), 717-739 (2007)

Sutton, §.M.: Aspect-oriented software development and software process. In: Li,
M., Boehm, B., Osterweil, L.J. {eds.) SPW 2005. LNCS, vol. 3840, pp. 177191,
Springer, Heidelbery (2006}

Webber, D., Gomaa, H.: Modeling variability in software product lines with the
variation point model. Science of Computer Programming 53(3), 305-331 (2004)
Yoon, 1-C., Min, 8.-Y., Bae, D.-H.: Tailoring and verifying software process. In:
APSEC, Macao, pp. 202-209 (2001)

Zhang, H., Jarzebek, S.; XVCL: a mechanism for handling variants in software
product lines. Science of Computer Programming 53(3), 381-407 (2004)

Genetic Algorithm and Varial
Search for Point to Multipoin

Noor Hasnah Moin and Huda Zuhrah Ab. Halin

Institute of Mathematical Sciences
University of Malaya

50603 Kuala Lumpur

Malaysia

noor_hasnah@um. edu.my

Summary. Routing of data in a telecommunicatior
vast amount of data flow in the network, Message

important aspect of data routing. It is the process of
each set has a single source and multiple destinations.
Cenetic Algorithm to determine the order of reque:
algorithm embeds a different Steiner Tree algorithn
second part of the study involves designing three
Neighborhood Search., These algorithms differ in the
in scarching the neighborhood, The performance of
a modified set of data taken from the OR library.

1 Introduction

Communication network management is becomi
the increasing network size, rapidly changing to
ticular, the importance of data routing in telec
longer be ignored due to the greater accessibilit
munications. The need for a more reliable and
importance. Message Scheduling Problem (MSP
set of requests where each request has a single sc
[3]. Specifically, different requests muy have diff
tination. MSP is modeled as a Point to Multipo
PMRP solves the problem by finding the optimal
(3), [11] and (6] use a combination of Genetic Al

Phe series sodies in Caogpeiationst! Direflienee 001 publishes new developments
ard advances i the various arcas of computatioral intelligence quckly and with
a high quality. The intent s o cover the thearvoapplhications,and design methods
ol computatioral intelligenee, as cnbedided i the fields ot enginecring, computer
scienee, phvsios and Tife scienee, as well as the methadologies behind thent

Fhe sertes contains monographs, lecture notes and adited volumes fn computationa:
prtclligence spanning the areas of neural setworks conreciianist svsiems, genetic
algorithms, cvolutionary computaton, arihicalintelhgence, cellutar automata,

selr organizing svstoms, et computing, Tz svstems ad hyvbrid intelligen

svstemns, Uritica’ to hoth contrilutors and readers are the short publication time and

world-wide distribuzien = this permits 2 rapid aisd broad dissemimation of rescarch

rosulls,

The oth ACIS Tnternational Conterence on Sollware Engineering, Research,
Management and Applications (SERA 2008) was held in Prague in the Czech
Republic en August 20 - 22, SERA o8 teatured excellent theoretical and practical
contrihutions in the areas ol formal methods and tools, requirements engineering,
saflware process models, communication svstems and networks, soltware quality
and evaluation, software engineering, networks and mobile computing,
paratlelidistributed computing, software testing, reuse and metrics, database
retrieval, camputer security, sottware architectures and modeling, Our conterence
officers selected the best 17 papers from those papers accepted for presentation al
the conference in order to publish them in this volume. The papers were chosen
based on review scores submitled by niembers or the program committee, and

underwent further rounds of rigorous review.

15$N 1860-949X

ISBN 978-3-540-70774-5 A Va”abie
online

ol783540l707745

springer.com

