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VI Preface

In chapter 6, Gang Huang et al. investigate the challenges in Software Architecture
(SA) associated with the flattening of hierarchical SA models in order to transform
platform-independent models into platform-specific models. The authors note the
problem of lost comprehensibility, redundancy and consistency in the transformation
process, and recommend a new systematic approach that preserves these qualities.

In chapter 7, Otso Kassinen et al. present a case study that provides practical guide-
lines for Simbian OS software development based on a three-year mobile software
research project on the criterion of networking middleware and collaborative applica-
tions. The authors present observations that advocate the use of platform-independent
solutions, the minimization of project dependencies and the representation of complex
activities in human-readable form.

In chapter 8, Muhammad Bilal Latif and Aamer Nadeem investigate the extraction
of a Finite State Machine (FSM) as associated with the writing of requirements speci-
fications for safety-critical systems. They discuss the challenge of automatic FSM
generation from Z-specifications as caused by difficulties in identifying and extracting
pre- and postconditions. The authors then present an automated approach to the sepa-
ration of this data, as a solution to this problem, and provide tools and experimenta-
tion to support their suggestion.

In chapter 9, Tomis Martinez-Ruiz et al. suggest a SPEM extension that will sup-
port the variability implied in a software process line. They provide for new methods
in their extension, in order to allow for the variability needed in a software process
line.

In chapter 10, Noor Hasnah Moin and Huda Zuhrah Ab. Halim propose a hybrid
Genetic Algorithm to determine the order of requests to be scheduled in the data rout-
ing of a telecommunications network. The authors then discuss the design of three
algorithms based on the Variable Neighbor Search. They conclude by comparing the
performance of these algorithms on a set of data from the OR library.

In chapter 11, Iutian Ober and Younes Lakhrissi propose the use of events as a first
class concept for the compositions of software components. They show how the ap-
proach can be applied to any language based on concurrent opponents and illustrate
their claim with examples.

In chapter 12, Annic Ressouche et al. investigate the challenges of creating auto-
matic specification and verification tools for synchronous languages. They design a
new specification model based on a reactive synchronous approach. In practice they
design and implement a special purpose language that allows for dealing both with
large systems and formal validation.
~ In chapter 13, Haldor Samset and Rolv Brak readdress the notion of active services in
the context of Service-oriented Architecture. In their paper, the authors explain how
active services and their behaviors can be described for publication and discovery.

In chapter 14, Ilie Savga and Michael Rudolf show how the use of a history of
structural component changes enables automatic adaptation of existing adaptation
specifications.

In chapter 15, Dimitrios Settas and Ioannis Stamelos propose the Dependency
Structure Matrix (DSM) as a method that visualizes and analyzes the dependencies
between related attributes of software project management antipatterns in order to
reduce complexity and interdependence. The authors exemplify their solution with a

Preface VII

DSM of 25 attributes and 16 related software project management antipatterns that
appear in the literature on the Web.

In chapter 16, Gang Shen proposes a practical curriculum for an embedded systerns
software engineering undergraduate program. The curriculum advocates a proactive
learning setting in close cooperation with the relevant industry.

In chapter 17, Yoshiyuki Shinkawa proposes a formal model verification process
for UML use case models. The author then describes the results of a test example
performed on a supermarket checkout system.

It is our sincere hope that this volume provides stimulation and inspiration, and that
it be used as a foundation for works yet to come.,

May 2008 Roger Lee
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Towards a SPEM v2.0 Extension to Define
Process Lines Variability Mechanisms

Tomds Martinez-Ruiz’, Félix Garcia!, and Mario Piattini'

Alarcos Research Group, Information and Technology Systems Department
Escuela Superior de Informatica, University of Castilla-La Mancha

Paseo de la Universidad, 4, 13071 Ciudad Real, Spain
{tomas.martinez,felix.garcia,mario.piattinilucln. es

Summary. Software organizations need to adapt their processes to each new project.
Although Software Process Lines are the most suitable approach for the design of pro-
cesses which are adapted to different contexts, SPEM does not include the appropriate
mechenisms for modelling them. The ohjective of this paper is to suggest a SPEM
extension which will support the variability tmplied in a Software Process Line. New
variability mechanisms based on the use of Variation Points and Variants, by means
of which the variability necessary in a Process Line is represented, have been pro-
posed. The new mechanisms that we shall introduce into SPEM, will allow it to model
Software Process Lines. From these lines, the generation of processes adapted to each
context will simplify the selection of the appropriate variants for each variation point.

Keywords: Software Process Lines, SPEM, Variability.

1 Introduction

Software development organizations are currently interested in increasing their
competitiveness and quality levels. In order to achieve this target, they need
to have well-defined processes. For this reason, various process evaluation and
improvement models have been proposed, such as CMMI, ISG/IEC 15504,
SCAMPI, MoProSoft, BvalProSoft or the COMPETISOFT Methodological
Framework processes.

However, the diversity of enterprises, projects and contexts in which processes
take place is too diverse. For example, in Spain, the Civil Service Ministry re-
quires the that totality of the software that it uses be developed using Métrica
v3 [7], which is not used in the projects of other official bodies. This makes the
statement Just as there are no two identical software projects, there are no two
tdentical software processes in the world (5] elear. In this respect, it is difficult to
apply defined generic process models in organizations without having previously
adapted them to the specific situations in which they are going to be developed
[18].

In the adaptation process of a software process, a set which is very similar to
the original processes is developed, although these processes are not very different
from each other. All these processes, which are virtually identical, make up a
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Software Process Family. In a process family, processes can make good nse of
their similarities and exploit their differences, in a manner similar to that o
Software Product Lines [13].

In order to generate the differences that distinguish each process of a softwar
process line, it is necessary to facilitate mechanisms through which this variation
in the processes can be defined. However, SPEM (Software process Engineering 5
Metamodel) [12], which has been confirmed as.being the appropriate Metamodel’
with which to represent software processes does not, al present have the appro-
priate variability mechanisms to allow the generation of processes following thy
Software Process Line approach to take place. .

In this paper, new variability mechanisms in SPEM are proposed, which con.
tribute with the functionality necessary to model Software Process Lines. Besides
this introduction, in Sect. 2 a state of the art in software product lines variabil
ity mechanisms is presented. Section 3 contains & summary of SPEM and an
analysis of its current variability mechanisms, so that we can go on to show our
proposal for variability mechanisms in Sect. 4. Finally, inr Sect. 5 our conclusions
and future work are presented.

2 State of the Art: Variability in Product Lines

To the best of our knowledge no other works exist in which the product lin
approach has been applied to form modelling variability in softwarc processes
which constitutes the topic of this work.

However, some approaches dealing with variability in software product lin
exist, which it is useful to analyze within the context of the work presented here

Within the relevant literature, the majority of the variability mechanisms
proposed for Software Product Lines are based on variation poiats and variants

A variation point is the place in which variability occurs 2], whereas variant
are the concrete slements that are placed at the variation points, each of whic
jmplements this variability in a different way.

In [17], after an analysis of the various approaches through which the variabik
ity in Software Product lines can be modelled, it wus determined that the use of
variants and variation points peesents, amongst other advantages, the possibility:
of adding new variability implementations, by adding new variants, Furthermore
according to [1], it is possible to specify dependences and conatraints betwee
these elements. )

In {15] & solution which is also based on variations, variation points and the
relationships is proposed. This sclution furthermore defines dependences bey;
tween variation points and includes three abstraction levels in which to mo
variability. These components are included in the COVAMOF framework, which
is validated by means of an experiment.

The PULSE methodology defines the five basic elements of a software produg
lirie: variation points, variants, their relations, constraints and a mechanism wit]
which to generate products. It also inclucdes a Decision Model in & high level 0
ahstraction to define system variants [14].

A SPEM v2.0 Extension to Define Process Lines Variability Mechanisins I8

Van der Hoeck proposes an approach based on XML schemas which model th
system: structural breakdown in a incremental way. One notable characteristic ¢
this mechanism is that it allows us to manage variability owing to the evolutioi
of versions of the product itself [4].

In [3], an idea based on a set of patterns with which to build, manage am
manipulate variation points is presented,

XVLC [19] is a methodology that adds extensions to UML in order to mode
variation points and variants, and it furthermore specifies that the choice of .
variant atfects software architecture and distinguishes those variants that affec
the whole system in a crosscutting manner.

Software Process Lines variability mechanisms can be designed by using th
ideas from these proposals as a starting point. These mechanisms can be adde
Lo the process definition of SPEM to permit the Process Lines specification.

3 Software Process Engineering MetaModel

SPEM (Software Process Engineering Metamodel) [12] is the Object Manage
ment Group (OMG) proposal throngh which to represent software processe
and metheds. It is based on other OMG models, such as, MOF (Meta Objec
Facility} [10] and UML {Unified Modelling Language).

Recently the new 2.0 version of this Standard has been developed, whic
contributes significant new capabilities to the latest version. The Metamodel i
divided into seven packages, with a hierarchical structure Fig. 1.

The following is a summary of the contents of each package illustrated in Fig. 1

+ Core: this contains all those classes and abstractions which are part of th
metamode] base.

* Process Structure: this sub-paclage contains the elements which are nec
essary to define process models.

* Process Behaviour: this models process behaviour.

* Managed Content: this contains the elements which are needed to manag

textual method descriptions.

Method Content: this sub-package includes the concepts with which t

define methods.

Process with Methods: this sub-package permits method and process in

tegration,.

Method Plugin: this sub-package contains the metamodel concepts wit]

whicl to design and manage reusable and configurable methods and proces

libvaries and repositories. It also includes certain variability elements an

allows us to define the granularly extended process.

SPEM includes graphic notation, but uses UML associstion relationship

[> ¥ . . . . -
SPEM's notation ailows us to represent and visualize diagrams with processe
and methods.
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Fig. 1. Structure of the SPEM 2.0 Metamodel [12]

3.1 Variability in SPEM

SPEM v2.0 defines variability within its MethodPlugin package. It includes the
classes which are necessary to allow variability in methods and processes, by
means of defining the abstract VariabilityElement class and the Variability Type
enumeration.

The abstract VariabilityBlement class (Fig. 2) allows us to add the variability
concept to the process and the method definition of both the ProcessStructure
and MethodContend packages. Given that the Activity (Process Structure pack-
age), MethodContentElement ( MethodContent package) and Section (Menaged-
Content package) ciasses inherit from the VariabilityElement class, then these
and their descendants acquire the “vary” capability.

By meuns of variation, the structure of the method can be customized without
having to modify it directly.

The VarinilityType enumeration defines the type of variability between both
instances of the VariabilityElement class. It includes the contributes, replaces,
extends, emtends-replaces and na vaiues (by default), The first four are now
deseribed:

Contributes is a variability relationship that allows the addition of a Vari-
abilityBlement to another base, without altering its original contents. This
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Fig. 2. VariahilityBlernent class and its relationships [12]

relationship has transitive properties. A base element must have more than one
contributor.

Replaces is a variability inechanism which permits the VariabilityElement to
be replaced by another one, without modifying its properties. A base element can
anly define a replaces relationship. Like contribution, the replaces relationship
is transitive.

The extends relationship is an inheritance mechanism between the Varigbil-
ityElement. This relationship is similar to the UML  extends relationship. This
relationship is also transitive and both the contributes and replaces relationships
take priority over extends.

The extends-replaces refationship combines the effects of both previous
relationships. So while the replace relationship replaces all the properties of the

base element, this one only replaces those values which have been redefined in

the substitute element.

3.2 Limitations of the SPEM v2.0’s Process Lines Variability

As a result of the analysis carried out in SPEM, certain limitations have been
detected when it is used to model Software Process Lines.

1. The proposed variability in SPEM is orientated more towards changing
methods than processes. In fact, the diagram in Fig. 2 shows that the
methodContent class inherits from the VariahilityElement class. The
methodContent class is a super-class of all the classes which permit the
design of methods, and only the Activity class is used to model processes,
Due to the fact that the processes are the entities that are executed, it will
be desirable to carry out the necessary modifications/adaptations in order
to execute it in the context of a project within the process, and not in the
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method upon which it is based. Furthermore, we must take account that
when the method content is used, the user can define the correspondence
between the process and method elements, and may ignore the variability
introduced into the method, so that it cannot be used.

2. This variability mechanisms do not permit the delimitation of the core part
of the Software Process Line. As we have discussed previously, a Software
Process Line is composed of a set of processes which have certain common
characteristics, and which differ in other characteristics, and this makes them
suitable for one context or another. However, the variability mechanisms of
SPEM do not allow us to establish that a part of the process line will be
common to all processes, ot to limit these variations.

- The variability mechanisms of SPEM do not guarantee that the variations
introduced to generate a new process will not alter its objectives. The goals
must be common to all the adjustments that are made in the process us-
ing variability mechanisms. However, because the variability mechanisms of
SPEM do nat allow us to define the core of a Software Process Line, it is not
possible to include the objectives of the process in it and ensure that they
are not modified. To aveid this, the actions of the variability mechanismns
should be mcre limited. That is, in a process line it should be possible to
specify which parts may vary and in which range of values.

4. It may be difficult to reuse SPEM v2.0 plugins with the variability mech-

anisms defined. In the SPEM MethodPlugin the MethodPlugin elements
are defined as follows: these are extensible packages that represent a physi-
cal container for process and method packages (12]. Likewise, the replaces
operation is used in  MethodPlugins to replace ContentElements such as
RolcUse, TaskUse, or Activity with a new variant or to change the relation-
ships between them [12].
This adaptation approach using plugins has the disadvantage that it is nec-
essary to define a new plugin in order to extend that of the hase which
contains the process specification and adapt it to the context in which it will
he enacted.

5. SPEM v2.0 does not include a specific notation with which to represent the
process variability. Variability is shown by using the UML association and
inheritance relationships, characterized by means of stereotypes. However, it
is difficult to read some of these relations.

o

To sum up, due to the limitations previously listed, we believe that SPEM
v2.0 variability mechanistns can be enhanced for modelling variability in Software
Process Lines.

4 Specific Process Lines Variability Mechanisms

We introduce an outline of our variability mechanisms proposal with the aim
of allowing SPEM v2.0 to support Software Process Lines. Likewise, we analyze
their integration into the SPEM metamodel currently defined, and present an
example of their use.
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4.1 General Description

Gur proposal is based on the mechanisms with which to manage the variability
defined in Software Product Lines. Qur aim is to use said mechanisms to devclop
others which will allow us to model variability in Software Process Lines. We list
the elements that we believe to be necessary below.

L. Variation points and variants: in the same way as was identified in
the Software Product Lines, the Variation points are the point in the pro-
cess madel in which the variation occurs (adapted from [14]). They will be
“empty” model elements that will be “flied” with variants to allow the gen-
eration of a new process from the process line which witl be adapted to the
context in which they are to be developed. There will be variants of each
element of the model ( VActivity, VWorkProductDefinition, ete.), which con
be inserted at certain variation points, and which will be dependent on the
context in which the process is going to be implanted. Each variation point
will have a set of associated variants and will be occupied by one or more of
them.

Due to the fact that several element types take part in a process (Rolelise,
WorkProductUse, Activity, TuskUse), this distinction must also be made
between the different types of variant and variation point elements.

2. Relationships and dependencies: Both, variation points and variants
define the relationships between them. Variability is an entity which is as
complex as a process and cannot be seen as a precise occurrence, but as
one which will affect several part of the process structure. Dependencies will
therefore allow the variations introduced into a process to be consistent.
That is to say, they will ensure that if a task is carried out by a role, then
hoth are connected.

3. Constraints: Tn addition to the relationships between the elements, we also
need to take into account that constraints may appear between elements.
For example, a constraint might be that a mandatory variation point must
be always occupied by a variant.

4.2 New Variahility Mechanisms Added to SPEM v2.0

In a way similar to that in which UML profiles extend their metamodel [6], the
SPEM Metamodel can be extended to support the variahility mechanism defined
in the previous section. Different extensions can thus be added to the Method
Plugin standard’s package. To ensure the consistence and correct use of the now
elements, OCL constraints are used [11).

First, a LProcElement should be designed. This is an abstraction of all the
elements related to the Saftware Process Lines variability (Fig. 3). LProcElement
is an abstract specification of Classifier, from UML packages.

The two specifications of LProcElement shown in Fig, 2, VarPoint and Vari-
ant, are the variation point and variant representation, respectively. Variants
know the variation point for which they have been designed and which they will
be able to oceupy.
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Fig. 3. Variability by means of LProcElement : Process models will contain different specifications of VarPoint, which will .
be “occupied” by the appropriate specifications of Varigni. The relationship
_ that binds a variation point to its variant, Qecupation, is a UML Generalization
VarPoint Activiy Varkawt specification {Fig. 5).
The Qecupation relationship may in turn be of several types, which are spec-
) ified by the QccupationType. These may be Optional, Mandatory or Alternative
type. Given that this refationship is also a generalization, we need to define the 3
W Achvily VActivity

OCL constraint to foree it to be used exclusively between variants and variation

points {Tahle 1). -
Constraint of Table 2 specifies that the nature of the elements between which

Fig. 4. VPActivity's and VActivity’s concrete types the Occupution relationship is established must be compatible and the variant

is designed to occupy this variation point.

The Occupation relationship is drawn by using an arrow similar to that of the I
[ intracatrcyurt ibrery:: Core:: Cona ucteG crsfization | . - UML generalization, but with a circle on the back tip and a filled triangle on 4

lll ToprOcasisd the front tip (Fig. 6), to differentiate it from the other SPEM relationships. il
Finally, dependences can be established between elements, called Variability- i
Octupstion 1 [ OteupstionType ' Deperdences (Fig. 7). ;
© type : These are a UML dependencies specification, but can only exist between ele-
A ‘ ments belonging ¢o the Process Lines (Table 3). ]
[ I 1 ! Several types of variability dependencies may exist, such as VariantTo Vari- .‘
Opcional Menduory W‘ ant, VarPoini To VarPoint or VariantTe VarPoint, depending upon the element be- ]
i : :
Hneec: int . B
. Table 2. Occupation relationship between compatibility types constraint i
Fig. 5. Occupation relationship between Variants and VarPoints constraint Occupation inv: s

{self.general. OcllsTypeOf (VPRaleDefinition) implies i
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or self general. OcllsTypeOf (VPWorkProduet) implies
self.specific. OcllsTypeOf{ VWorkProdut))

and self.specific.canOccupe-jincludes(self. general)

The two aforementioned classes are also abatract, due to the fact that var- ‘
lous variants and variation peints of a variety of natures may exist (Activity,
RoleUse). Fig, 4 shows how the variation peints and variants of a concrete el
ement were mocdelled. In this case, the figure shows the activity variant and
variation point. As we can see, both VPActivity and VActivify are also a speci-
fication of the Activity class.
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Table 3. VariabilityDependency is only available for LProcElements

constraint VariabilityDependency inv:
self.supplier. OclleKind Of (L.PracElement) and
self.client.OcllsKindOf (LProcElement)

Table 4. New VarPoint and Varignd graphic icons
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tween which they are defined. Each dependency is associated with its Variability-
DependencyType, which identifies whether it is inclusive or exclusive. For the use
of the model, we also propose new icons by means of which the new variability
functionzlity can be graphically defined. These icons are based on those used to
represent those elements to which a variation capacity is given. (Tabie 4).

4.3 Application Example

To illustrate our proposal, in this section we show a case study carried out on
the COMPETISOFT [8, 9] process model. COMPETISOFT is an iberoamer-
ican project in which a Software Process Improvement Framework has been

B -
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Fig. 8. Processes and categories in the COMPETISOFT process madel

defined for and adapted to very small enterprises. This framework includes sev-
eral process improvement proposals and is intended to be nsed, with the appro-
priate adaptations, in various ibercamerican countries, The COMPETISQOFT
process medel is made up of ten processes which are grouped into three categories
(Fig. 8). The first is Top Management and this provides the aligninents which
allow the organization to work: The second category, Management, includes the
process, project and resource management. The Operations category deals with
the practices of development projects and software maintenance.

The process model pattern includes a section called “adjustment guide” which
determines possible modifications toa the process which should not affect its ob-
jectives. This guide includes an introductory rough draft to the variability in the
process. We shall now show how the variations in the software development pro-
cess of COMPETISOFT allow said process to be modelled by using the SPEM
extension described in this paper. A Process Line is thus generaled, whose pro-
cesses are adapted o the situations described in the adjustment guide. Without
these variability mechanisins, & specific process model for each situation would
be necessary.

1. Although the activities in COMPETISORT corresponding with dnanlysis
and Design have been considered seperately, in certain organisations it may
be seen us expedient o fuse them, and to call the resulting activity Anagsis
and Design. The process will thus have an activity type variation peint,
and a variant will take place which will contain (Fig. §), An example which
is similar to the aforementioned case occurs with the activitics related o
Integreiion and Testing.
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. The Colleague Review (sub)activity can be added to the Construction ac-

tivity in order to verify the code of the components. This activity will be
contained within a variant, which could occupy the VarPoint found in Con-
struction (Fig. 10},

. The Regquirements Specification work product contains various products. It

may, moreover, include a User Inferface Prototype with more or less func-
tionality, depending upon how complicated and how important the interface
is. The interface should have a variable functionality which can be mod-
elled as & variation point and can be occupied by various WorkProduct type
variants (Fig. 11).

. The System Testing Plan can be validated with the Client and with the

Securily System. Such (sub)activity will thus have a role type of variation
point which can be occupied by the variants which correspond with the two
roles previously commented upon (Fig. 12).-

. An IREE Standard can be taken into account in the Unil Testing Deﬁmtwn

activity. This document will be an entry variant to the task commented upon

(Fig. 13).

. A (sub)activity of the Modification of User Interface Prototype can be added

to the Consiruction activity, in which the User, an Expert or individuals
must participate. The Construction activity will thus have a variation point
into which the variant corresponding with the aforementioned (sub)activity

i e 4
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can be inserted. This variant will also have a variation point which can he
occupied by any of the previously described roles (Fig. 14).

As this example shows, the use of the newly defined variability mechanism will
allow the COMPETISOFT software development process to be adapted to vari-
ous contexts. Several aimost identical processes which form a part of the Software
Process Lines have been generated through this adaptation.
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5 Conclusions and Future Work

As this work has shown, Software Process Lines approach is a powerful tool which
permits the adaptation of processes to the specific conditions of an organisation
and to each of the projects thai it is carrying out at any given time. SPEM
furthermore supposes a powerful initiative through which to model the processes
which an organisation is carrying out, with the end of knowing them better,
purifying them and improving them. The inclusion in SPEM of mechanisms
which are appropriate to the generation of process families facilitates the creation
of process models which are adapted to the particular needs of whatever is being
cartied out. These models are instantiated by means of the proposed mechanisms.

The approach presented in this paper allows us to manage variability from
the perspective of Software Process Lines. The advantages that it offers are
summarized as follows:

s This proposal is intended to measure the introduction of variability in SPEM
processes, thus allowing it to define Software Process Lines.

o As with the Software Product Lines upon which they are based, thesc
new variation mechanisms permit specification within the SPEM metamodel
whose concrete parts may vary.

» By limiting the variability of the variation points, we assure that the rest of
the process cannot be altered.

s Because the variants are extremely small elements, they can easily be reused
at other variation points.

e This approximation includes a graphic notation with which variability can
be more easily modelled in SPEM 2.0 diagrams.

e The proposed extension provides COMPETISOFT process model with a suit-
able notation in which the variants defined in accordance with the adjustment
gnide can be represented in an explicit manner.

As future work, we shall first define variability mechanisms for other construc-
tors of the SPEM metamodel as, owing to the scope of the present work, only
the core elements were considered {activities, work products, roles and tasks).
Furthermore, additiona) empirical validasion will be carried out by applying the
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approach to new case studies. Other future work is to automate these variabi
ity mechanisms in the EPF Composer, which supports the definition of SPER
models.

Finally, we shall also consider the aspect orientation approach to model var
ability. Processes are made up of determined ’aspects’, such as security, usabilit;
etc., which have a transversal effect upon all their tasks. Bearing in mind th
similarity between this idea and that of the ‘crosscutting concerns’, defined in t
Aspect Orlented programme [16], and the manner of interrelation which give
place to the final code, the definition of the variability mechanisms in the Sof
ware Process Lines can also be carried out by using the features of the Aspe
Oriented programme.
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Summary. Routing of data in a telecommunicatior
vast amount of data flow in the network, Message

important aspect of data routing. It is the process of
each set has a single source and multiple destinations.
Cenetic Algorithm to determine the order of reque:
algorithm embeds a different Steiner Tree algorithn
second part of the study involves designing three
Neighborhood Search., These algorithms differ in the
in scarching the neighborhood, The performance of
a modified set of data taken from the OR library.

1 Introduction

Communication network management is becomi
the increasing network size, rapidly changing to
ticular, the importance of data routing in telec
longer be ignored due to the greater accessibilit
munications. The need for a more reliable and
importance. Message Scheduling Problem (MSP
set of requests where each request has a single sc
[3]. Specifically, different requests muy have diff
tination. MSP is modeled as a Point to Multipo
PMRP solves the problem by finding the optimal
(3), [11] and (6] use a combination of Genetic Al
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